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Abstract. The nearest-neighbor mass-spacing distribution of the meson and baryon spectrum (up to
2.5 GeV) is described by the Wigner surmise corresponding to the statistics of the Gaussian orthogonal
ensemble of random matrix theory. This can be viewed as a manifestation of quantum chaos in hadrons.

PACS. 14.20.-c Baryons (including antiparticles) — 14.40.-n Mesons — 05.45.Mt Semiclassical chaos (“quan-

tum chaos”)

1 Introduction

Quarks are glued into colorless objects called hadrons,
forming a large and complex hadron spectrum. This spec-
trum is the main source of information about the quark-
gluon interactions in the confinement regime, and there-
fore hadron spectroscopy has been receiving a lot of at-
tention both theoretically and experimentally.

In the study of complex spectra in general, statisti-
cal methods proved to be useful. One of the early suc-
cesses of statistical analysis was Wigner’s celebrated dis-
covery of the fact that fluctuation properties of complex
nuclear spectra are described by the Random Matrix The-
ory (RMT) [1-6]. It was later realized that these proper-
ties, referred to as Wigner-Dyson properties, have a great
deal of universality and appear in spectra of many physical
systems, ranging from quantum dots [7] to lattice gauge
theories [8-11].

Here we will show that the experimentally measured
hadron spectrum has at least some Wigner-Dyson proper-
ties as well. Once this is established the link to the under-
lying dynamics is made via the Bohigas-Giannoni-Schmit
(BGS) conjecture [12], which states that the Wigner-
Dyson properties are generic to spectra of the systems
with a quantum analog of chaotic dynamics —the “quan-
tum chaos” (see, e.g., [13,14]). It is worth mentioning that
BGS [12] enlisted hadrons amongst the many other sys-
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tems where this phenomenon should be observed. The re-
sults presented here fulfill this anticipation to some extent.

Recent theoretical work in lattice QCD [8-10] and
quantum-mechanical Yang-Mills models [15] has already
addressed the statistical properties of QCD spectrum as
well as the quantum chaos aspects. Our findings will pro-
vide certain empirical support of these results and, hope-
fully, motivate further studies in this direction.

2 The analysis

We look at the experimentally measured mass spectrum
of hadrons up to 2.5 GeV taken from the Particle Data
Group (PDG) Summary Tables [16]. More specifically,
we consider N, A, A, and X baryons up to N(2200),
and all the mesons listed in the Summary Tables up to
f2(2340). In doing so, we exclude the poorly known “one-
star baryons”. We have only verified that they do not have
a significant impact on our results.

The spectrum can be organized into multiplets, see
fig. 1, characterized by a set of definite quantum num-
bers (QNs): isospin, spin, parity, strangeness, baryon num-
ber, and, in the case of mesons, charge conjugation. Using
these data we would like to examine the probability dis-
tribution of spacing (mass splitting), S; = m;1 — m;,
between nearest-neighbor hadrons within one multiplet
(same QNs). We thus do not need to consider channels
with only a single state below 2.5 GeV.

Each multiplet provides a number of spacings which
are gathered into a common array of spacings. We actu-
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Fig. 1. Light-hadron spectrum (excluding 1-star baryons) in the form of multiplets characterized by definite quantum numbers.

Table 1. Mean mass spacing. The error bars stem from the
PDG quoted errors.

Spectrum | (S), in MeV
Baryon 289.8 £ 18.8
Meson 284.3 £ 35.8
Hadron 287.1 £27.3

ally will be considering three arrays: {S;}p, {Si}am, and
{Si}u = {{Si}B, {Si}m} containing the spacings of, re-
spectively, the baryon, the meson, and all multiplets. As
usual, the mean spacing, (S) = (1/N) Zgzl Sj, is scaled

out and we deal with dimensionless arrays':

{sitp ={Si}B/ (95,
{sitar = {Sitam/ (S)ns > (1)
{site = {Situ/(S)y = {{Si}B/(S) g, {Si}nt/ (S)y}-

! In doing so, we assume that the mean spacing (S), or, the
level density p = 1/ (S), is constant over the considered energy
region. We have tested this assumption by studying the func-
tion N(m) which gives the number of states below mass m.
The constant density approximation: N(m) = Ny + pm, holds
very well in the mass region between 1 and 2 GeV, where most
of the states are.

The mean spacing values (S) B, are computed in ta-
ble 1. It is certainly remarkable that they all come out
so close to each other. This apparently means that both
the meson and the baryon mass-density is governed by the
same scale of approximately 300 MeV.

Histograms of the resulting spacing distributions,
p({si}B), p({si}a), and p({s;}x) are presented in fig. 2.
The curves in the figure show the Poisson-like distribu-
tion [p(s) = exp(—s)], and the Wigner surmise [p(s) =
5s eXp(7%SQ)]. They represent two extreme regimes: un-
correlated spectrum wvs. a strongly correlated one.

The figure clearly shows that the experimental distri-
bution is of the Wigner-surmise type. We have checked
that if one does not discriminate the QNs (“mixed QNs”)
the spacing distribution is Poissonian, so only states with
the same QNs are correlated.

The histogram plots represent the distributions in a
rather qualitative way because, due to the low statistics,
the picture is very sensitive to the choice of the grid. Ac-
counting for the error bars makes it even less accurate. It
is more instructive to consider integrated characteristics,
such as the moments of distribution. For our empirical



V. Pascalutsa: A statistical analysis of hadron spectrum: Quantum chaos in hadrons

Baryon Data
1
Y Same QN'’s
08 [ 24 spacings
77 N <S>=290Mev
0.6 .
N
0.4 N
02 ~ \\
0 =
05 1 15 2 25
Meson Data
1
Y Same QN'’s
08 1 \ 24 spacings
‘TN <S>=284Mev
0.6 .
AN
0.4 N
0.2 ~{
0
05 1 15 2 25
Combined Data
1
\ b
\ Same ON'’s
08 [ 48 spacings
‘TN <S=287Mev
0.6 .
AN
0.4 s
N
02 ~ L
0

Fig. 2. Histograms of the nearest-neighbor mass-spacing dis-
tribution for hadron states with same QNs. Curves represent
the Poisson (dashed) and Wigner (solid) distributions.
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Table 2. x?/point fit of 3 = 1 Wigner surmise to the first ten
moments of the experimental spacing distributions for various
unfoldings.

Unfolding Baryon x> ’ Meson x? | Hadron x?
None 0.52 0.66 0.57
B vs. M - - 0.54
S=0ws —1 0.29 0.40 0.33

distribution the n-th moment is simply calculated as

1 N
(5 o = 7 D 51 2
i=1

which obviously is not sensitive to the analysis artifacts
such as the choice of energy grid.

At the same time let us consider a more general form
of the Wigner surmise:

pw(s) = As? exp(—Bs?) (3)

where (3 is a parameter —the Dyson index; A and B are
constants fixed by the normalization conditions: <so>w =
1 = <31>W, where, naturally, (s")y, = fooo ds s™ pw(s).
Depending on the value of 3 expression (3) approximates
the spacing distribution of the RMT for various types of
Gaussian ensembles. The most common values are 8 =
1, 2, and 4 which represent the orthogonal (GOE), unitary
(GUE), and symplectic (GSE) ensembles, respectively.

Computing the first ten, or so, moments of all the rel-
evant distributions we obtain the results in fig. 3. The
moments of the Poisson and Wigner distributions (shown
by lines) are proportional to the Gamma-function (e.g.,
(s")p =T'(n+1), and (s")y = (2/y/m)" I'(3n + 1), for
3 = 1). Therefore they all increase rapidly with n and we
use a logarithmic scale to plot them.

Data points in fig. 3 correspond to the empirical dis-
tributions shown by the histograms in fig. 2, now with the
PDG error bars properly accounted for?. The Wigner sur-
mise with 8 = 1 fits these distributions extremely well:
comparing the first ten moments, x?/point values for the
three distributions are shown in the “None” row of table 2.

In general, before combining the level statistics from
two different spectra we would need to perform their un-
folding (i.e., normalize to unit mean spacing). Then the
combined meson-baryon array of spacings could be con-
structed as {s;}’y = {{si}B, {si}m}. However, because
the baryon and meson mean spacing come out so similar
(table 1) this construction leads to practically same results
as the one in eq. (2), the x? value changes insignificantly,
see “B wvs. M” row of table 2. One can also perform the
unfolding with respect to strangeness, which means one
treats the spectrum of strange baryons and mesons as dif-
ferent from that of non-strange ones, and unfolds prior
combining them. In this case the agreement with Wigner
surmise has slightly improved as is seen from the “S =0
vs. —1”7 row of table 2.

2 We account only for the the quoted mass-position error;
the width is not viewed as one.
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Fig. 3. Moments of spacing distributions. Explanations on the
data points are given in the text. Curves represent the moments
of Poisson distribution (dashed), and of the Wigner surmise for
GOE (solid), GUE (short-dashed), and GSE (long-dashed).
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3 Discussion and conclusion

The above analysis shows that the hadron level-spacing
distribution is remarkably well described by the Wigner
surmise for § = 1. This indicates that the fluctuation
properties of the hadron spectrum fall into the GOE uni-
versality class, and hence hadrons exhibit the quantum
chaos phenomenon. One then should be able to describe
the statistical properties of hadron spectra using RMT
with random Hamiltonians from GOE that are character-
ized by good time reversal and rotational symmetry.

The hadron-exchange models (e.g. [17]) should also be
able to benefit from the RMT methods, in a way analogous
to the stochastic theory of compound-nucleus reactions [5,
18]. However, since unitarity is an essential ingredient of
such models, a study of hadron width distribution is in or-
der. Widths of compound nuclei have the Porter-Thomas
distribution [3], and this fact eventually allows one to de-
fine a unitary S-matrix fully within RMT. We anticipate
that the same approach will be applicable in the hadron-
exchange reactions once the hadron width distribution is
determined. It needs to be mentioned that, in nuclei, the
agreement between data and RMT is established in the
neutron resonance region but close to the ground-state
plain RMT predictions are not expected to apply. This
appears to be in contrast to the hadron case discussed
here.

It would be very interesting to see how quantum chaos
emerges in hadrons as a result of quark-gluon underlying
dynamics. For this we would need to study QCD mod-
els which have these statistical properties of the spectra.
Lattice QCD studies in this direction are underway [8-10].
This problem should also be addressed for the quark mod-
els. For instance, do the quark models which fit the phys-
ical spectrum have the Wigner-Dyson statistical proper-
ties? And if they do, then, do their Hamiltonians indeed
define a chaotic classical system?

In conclusion, we have examined the nearest-neighbor
level-spacing (mass-splitting) distribution, p(s), of the ex-
perimental hadron spectrum. We focused on the lighter
part of the hadron spectrum (m < 2.5 GeV), since it is
more reliably known. The mean level spacing seems to
be the only relevant scale here, and after it is scaled out
the distribution shows universal behavior. Unfortunately,
the masses and quantum numbers are well known only
for a few dozen hadron states, so achieving high statis-
tics is out of the question. Nonetheless, the low-statistics
analysis we have performed pinpoints the moments of the
distribution accurately enough to claim that hadronic p(s)
fits the Wigner surmise with linear level repulsion (8 = 1).
This indicates that the spectrum falls into the GOE uni-
versality class of random matrix theory. Invoking the BGS
conjecture, this result is viewed as an empirical evidence
of the “quantum chaos” phenomenon in hadrons.

I thank Professor Iraj Afnan for valuable discussions, and Pro-
fessors Daniel Phillips and Jac Verbaarschot for critical re-
marks on the manuscript. The work was supported by the
Australian Research Council (ARC) and in part by DOE under
grant DE-FG02-93ER40756.



V. Pascalutsa: A statistical analysis of hadron spectrum: Quantum chaos in hadrons

References

. E.P. Wigner, Ann. Math. 53, 36 (1951); 62, 548 (1955);
65, 203 (1957); 67, 325 (1958).

. F.J. Dyson, J. Math. Phys. 3, 140; 157; 166; 1199 (1962).
. C.E. Porter, Statistical Theory of Spectra: Fluctuations
(Academic, New York, 1965), and references therein.

. M.L. Mehta, Random Matrices and the Statistical Theory
of Energy Levels (Academic, New York, 1967).

. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey,
S.S. Wong, Rev. Mod. Phys. 53, 385 (1981).

. R.U. Haq, A. Pandey, O. Bohigas, Phys. Rev. Lett. 48,
1086 (1982).

. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).

. M.A. Halasz, J.J.M. Verbaarschot, Phys. Rev. Lett. 74,
3920 (1995); D. Toublan, J.J.M. Verbaarschot, Nucl. Phys.
B 603, 343 (2001).

. J.J. Verbaarschot, Nucl. Phys. Proc. Suppl. 90, 219 (2000).

10.

11.

12.

13.

14.

15.
16.

18.

153

B.A. Berg, E. Bittner, H. Markum, R. Pullirsch, M.P. Lom-
bardo, T. Wettig, Universality and chaos in quantum field
theories, arXiv:hep-lat/0007008.

E. Bittner, H. Markum, R. Pullirsch, Quantum chaos
in physical systems: From super conductors to quarks,
arXiv:hep-lat/0110222.

O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett.
52, 1 (1984).

M.C. Gutzwiller, Chaos in Classical and Quantum Me-
chanics (Springer, Berlin, 1990).

G. Casati, B.V. Chirikov, Quantum Chaos (Cambridge
University Press, Cambridge, 1995).

L. Salasnich, Mod. Phys. Lett. A 12, 1473 (1997).

D.E. Groom et. al., Eur. Phys. J. C 15 1 (2000) (URL:
http://pdg.1bl.gov).

. V. Pascalutsa, J.A. Tjon, Phys. Rev. C 61, 054003 (2000);

V. Pascalutsa, Hadronic J. Suppl. 16, 1 (2001).
J.J. Verbaarschot, H.A. Weidenmuller, M.R. Zirnbauer,
Phys. Rep. 129, 367 (1985).



